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The development of ruthenium carbene complexes sudtaad

2 has transformed olefin metathesis into a versatile tool in organic 43,
and polymer chemistry/Unraveling the fundamentals of metathesis 6b-7b

catalyst decomposition is of critical importance, because the control
of decomposition pathways would result in increased catalyst
efficiency. Despite this, relatively few reported experimental studies
focus on decompositiohGrubbs and co-worket#iave investigated

the thermal decomposition of first- and second-generation meth-
ylidene complexe8 and4, which are thermally the most unstable
intermediates in the metathesis catalytic cycle. To the best of our
knowledge, no theoretical studies dedicated to resolving the cause
and/or prevention of ruthenium metathesis catalyst decomposition
have been published.
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. In t_he curren_t study, a substrate-induced decomeS't'on rQUte' Figure 1. Selected geometries and relative calculat€3qs energies (kcal/
involving B-hydride transfer from a ruthenacyclobutane intermediate mol) for stationary points on the potential energy surface for decomposition
(Scheme 1), is proposed, investigated by density functional theory of ruthenacyclobutanega and 6b (hydrogen atoms on the ligands are
(DFT) methods, and confirmed experimentally. omitted for clarity).

generation (L= IMes) ligand systems is shown in Figure 1.

Scheme 1 B-Hydride transfer from6a is calculated to proceed with an
(")'r‘\\c, (Ng\\m C'/»,,I|.(M C.%T(”) act?vat?on barrier AG¥299 of 16.9 kcal/mol compared to an
gt = R R CI,FE‘“—D activation barrier of 24.3 kcal/mol frorib. An earlier transition
= °<<B> "/ =\ state for6a—7a is suggested by the relatively elongated-Ri
sa 6a: L=PCys ’a ¢a distance for6a—7a (1.835 A) compared to the RtH distance in
5b 6b: L = IMes b 8b 6b—7b (1.751 A). The higher relative energy 6b—7b may be

Ruth lob | . i in th ) ascribed to greater steric interaction of the heterocyclic ligand with
uthenacyclobutandsare low-energy intermediates in the active o ruthenacyclobutane fragment, resulting in the largeice

olefin metathesis mechanism as supported by a number of theoreti-Ru_C angle (118.9) for 6b—7b compared to the corresponding
cal mechanistic studi€dn principle, the formation of a R allyl- P—Ru—C angle (96 9) for 6a—7a (Figure 1). Propene formation
hydride specieg from the ruthenacyclobutar could compete via hydride transfer back to a terminal allyl carbon7iaand7b,

with the conv_entu_)nal metat_he5|s sequenge 6). Subgquent is calculated to be facile for the first-generation catalyeb{gs =
reductive elimination would induce transfer of the hydride/ito

. L . N 3.0 kcal/mol; AG,9s = —4.8 kcal/mol) and proceeds essentially
the te_rmlnal posmoq of_ the allylic fragment resulting in the without barriet! for the second-generation catalyaiGoos = —2.3
formation of a coordinatively unsaturated Ru comp&xwhich kcal/mol).

should be inactive for metathesis. The relevance of this proposed 114 caiculated barriers fg-hydride transfer are not excessively

decomposition fo‘%te is supported by related transformations higher than the expected barriers for metathesis fégfhstrength-
observed for substituted ruthenacyclobutanBsallyl formation ening the feasibility of the decomposition route. The calculated

by B-hydrogen abstract_lor_l fro_m ruthenacyclobutahasheoretical barriers for decomposition suggest that the first-generation catalyst

study onj-hydrogen ellmlpatlon of ruthenacyclopentaﬁemd a should be more amenable for the proposed decomposition route

recent DFT Stgdy op-hydride transfer in a related rhenacyclobu- compared to the second-generation catalyst. Irreversible loss of the

tane complex! . metathesis active complexBsandé6 is dictated by the exothermic
The DFT-_caIcuIated Gibbs free _energ;(ﬁ at 298.15 K surface nature of allyl-hydride7 formation and facile formation of

for conversion of6 to 8 for both first- (L = PCy) and second- metathesis inactive complexé&s These 14-electron complexes,
lSasoI Technology (Pty), Ltd., South Africa. containing two open coordination sites on _Ru, could essentially

Sasol Technology (UK), Ltd., Scotland. follow a number of subsequent decomposition pathways.
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at 40°C for 16 h. After such timefH NMR and GC analysis Supporting Information Available: Detailed theoretical methods,
revealed the formation of propene, 1- and 2-butenes, as well ascartesian coordinates of optimized structures, and experimental data
small amounts of cyclopropane and isobutene (Scher&!2). and procedures (PDF). This material is available free of charge via the
Internet at http://pubs.acs.org.
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obligatory. The results provide significant new insight into the 18) |14E|)3t4'd' 13% vield or . For additireabeling studi

P . P Solated In 0 yield as a colorless solid. For adaiti eling stuaies
rPature of Ru-garben_e C"’_‘taly5t decomposition under Catglyt'c condi- on the role of [HIMesH]CI during decomposition, with and without the
tions. Further investigations on the role of substrate during catalyst presence of substrate, see Supporting Information.
decomposition are in progress. JA0453174
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